

3 Sobolev Spaces

Exercise 3.1. Let $\{u_n\}_{n \in \mathbb{N}} \subset W^{m,p}(\Omega)$ be a Cauchy sequence. Then for every $|\alpha| \leq m$, $\{D^\alpha u_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in $L^p(\Omega)$, thus there exists $g_\alpha \in L^p(\Omega)$ such that $D^\alpha u_n \rightarrow g_\alpha$ in $L^p(\Omega)$. Moreover, denoting by u the L^p -limit of u_n , then $D^\alpha u = g_\alpha$ in $\mathcal{D}'(\Omega)$, indeed

$$\langle D^\alpha u, \varphi \rangle = (-1)^{|\alpha|} \langle u, D^\alpha \varphi \rangle = (-1)^{|\alpha|} \lim_{n \rightarrow \infty} \langle u_n, D^\alpha \varphi \rangle = \lim_{n \rightarrow \infty} \langle D^\alpha u_n, \varphi \rangle = \langle g_\alpha, \varphi \rangle.$$

Exercise 3.2. The inclusion $W_0^{m,p}(\mathbb{R}^d) \subset W^{m,p}(\mathbb{R}^d)$ is trivial. In order to prove the other one, we need to show that $C_0^\infty(\mathbb{R}^d)$ is dense in $W^{m,p}(\mathbb{R}^d)$. First we recall that $f_\varepsilon := f * \rho_\varepsilon \in C^\infty(\mathbb{R}^d)$ converge to f in $W^{m,p}(\mathbb{R}^d)$: indeed for every multi-index α with $|\alpha| \leq m$ it holds $D^\alpha f_\varepsilon = (D^\alpha f) * \rho_\varepsilon \rightarrow D^\alpha f$ in $L^p(\mathbb{R}^d)$. Given $\delta > 0$ let $\varepsilon > 0$ be such that $\|f - f_\varepsilon\|_{W^{m,p}(\mathbb{R}^d)} < \delta/2$.

Let $\varphi \in C_0^\infty(\mathbb{R}^d)$ be such that $\varphi \equiv 1$ on $B_1(0)$ and given $R > 0$, let $\varphi_R(x) := \varphi(x/R)$. We show that for R large enough, $\|f_\varepsilon - f_\varepsilon \varphi_R\|_{W^{m,p}(\mathbb{R}^d)} < \delta/2$ so that $\|f - f_\varepsilon \varphi_R\|_{W^{m,p}(\mathbb{R}^d)} < \delta$ and this concludes the proof.

For every multi-index α with $|\alpha| \leq m$, by the Leibniz rule (for smooth functions!), we have

$$D^\alpha (f_\varepsilon \varphi_R) = \sum_{\beta \leq \alpha} C_{\alpha,\beta} D^{\alpha-\beta} f_\varepsilon D^\beta \varphi_R = \sum_{\beta \leq \alpha} C_{\alpha,\beta} D^{\alpha-\beta} f_\varepsilon D^\beta \varphi \frac{1}{R^{|\beta|}}.$$

If $\beta = 0$, then by dominated convergence theorem, $D^\alpha f_\varepsilon \varphi_R \rightarrow D^\alpha f_\varepsilon$ in $L^p(\mathbb{R}^d)$ as $R \rightarrow \infty$. If $\beta \neq 0$, then

$$\|D^{\alpha-\beta} f_\varepsilon D^\beta \varphi \frac{1}{R^{|\beta|}}\|_{L^p} \leq \sup |D^\beta \varphi| \frac{1}{R^{|\beta|}} \|D^{\alpha-\beta} f_\varepsilon\|_{L^p(\mathbb{R}^d \setminus B_R)} \rightarrow 0 \quad \text{as } R \rightarrow \infty.$$

Since $C_{\alpha,0} = 1$, this proves that $D^\alpha (f_\varepsilon \varphi_R) \rightarrow D^\alpha f_\varepsilon$ in L^p as $R \rightarrow \infty$.

Exercise 3.3. Since $u \in L^\infty(\Omega)$ and Ω is a bounded domain, we have that $u \in L^p(\Omega)$ for every $p \in [1, \infty]$. Moreover, u is continuous on Ω . Let $\varphi : \Omega \rightarrow \mathbb{R}$ be a function of $\mathcal{D}(\Omega)$ so smooth with compact support in Ω and let us compute the partial derivatives of u in the sense of distributions

$$\begin{aligned}
\langle \frac{\partial u}{\partial x}, \varphi \rangle &= -\langle u, \frac{\partial \varphi}{\partial x} \rangle = - \int_{\Omega} u \frac{\partial \varphi}{\partial x} \\
&= - \int_0^1 \int_{-1}^0 e^x \frac{\partial \varphi}{\partial x}(x, y) dx dy - \int_0^1 \int_0^1 (1 + \sin(xy)) \frac{\partial \varphi}{\partial x}(x, y) dx dy \\
&= - \int_0^1 \varphi(0, y) dy + \int_0^1 \int_{-1}^0 e^x \varphi(x, y) dx dy \\
&\quad + \int_0^1 \varphi(0, y) dy + \int_0^1 \int_0^1 y \cos(xy) \varphi(x, y) dx dy \\
&= \int_0^1 \int_{-1}^0 e^x \varphi(x, y) dx dy + \int_0^1 \int_0^1 y \cos(xy) \varphi(x, y) dx dy
\end{aligned}$$

and

$$\begin{aligned}
\langle \frac{\partial u}{\partial y}, \varphi \rangle &= -\langle u, \frac{\partial \varphi}{\partial y} \rangle = - \int_{\Omega} u \frac{\partial \varphi}{\partial y} \\
&= - \int_0^1 \int_{-1}^0 e^x \frac{\partial \varphi}{\partial y}(x, y) dx dy - \int_0^1 \int_0^1 (1 + \sin(xy)) \frac{\partial \varphi}{\partial y}(x, y) dx dy \\
&= \int_0^1 \int_0^1 x \cos(xy) \varphi(x, y) dx dy.
\end{aligned}$$

Using that $|e^x| \leq 1$ in $\Omega \cap \{x < 0\}$ and both $|x \cos(xy)| \leq 1$ and $|y \cos(xy)| \leq 1$ in $\Omega \cap \{x > 0\}$, we deduce that the partial derivatives $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}$ are in $L^p(\Omega)$ (and so $u \in W^{1,p}(\Omega)$) for every $1 \leq p \leq \infty$.

Exercise 2.4. Let $\varphi \in \mathcal{D}(\Omega)$ and let $\tilde{\Omega} \subset\subset \Omega$ such that $\text{supp} \varphi \subset \tilde{\Omega}$ and $\varepsilon < \text{dist}(\tilde{\Omega}, \partial\Omega)$.

Consider the mollifications f_ε and g_ε , for $\varepsilon < \text{dist}(\tilde{\Omega}, \partial\Omega)$ which are well-defined functions in $\tilde{\Omega}$. If $p \in (1, +\infty)$, then $f_\varepsilon \rightarrow f$, $\partial_i f_\varepsilon \rightarrow \partial_i f$ in $L^p(\tilde{\Omega})$ and $g_\varepsilon \rightarrow g$, $\partial_i g_\varepsilon \rightarrow \partial_i g$ in $L^p(\tilde{\Omega})$, from which we also deduce that

$$\begin{aligned}
f_\varepsilon g_\varepsilon &\rightarrow fg \\
\partial_i f_\varepsilon g_\varepsilon + f_\varepsilon \partial_i g_\varepsilon &\rightarrow \partial_i fg + f \partial_i g,
\end{aligned}$$

in $L^1(\Omega)$. Thus we can compute

$$\begin{aligned}
\langle \partial_i(fg), \varphi \rangle &= - \int_{\tilde{\Omega}} fg \partial_i \varphi = - \lim_{\varepsilon \rightarrow 0} \int_{\tilde{\Omega}} f_\varepsilon g_\varepsilon \partial_i \varphi \\
&= \lim_{\varepsilon \rightarrow 0} \int_{\tilde{\Omega}} (\partial_i f_\varepsilon g_\varepsilon + f_\varepsilon \partial_i g_\varepsilon) \varphi = \int_{\tilde{\Omega}} (\partial_i fg + f \partial_i g) \varphi.
\end{aligned}$$

If $p = 1$, then

$$\begin{aligned}\langle \partial_i(fg), \varphi \rangle &= - \int_{\tilde{\Omega}} fg \partial_i \varphi = - \lim_{\varepsilon \rightarrow 0} \int_{\tilde{\Omega}} f_\varepsilon g \partial_i \varphi \\ &= \lim_{\varepsilon \rightarrow 0} \int_{\tilde{\Omega}} (\partial_i f_\varepsilon g + f_\varepsilon \partial_i g) \varphi = \int_{\tilde{\Omega}} (\partial_i fg + f \partial_i g) \varphi,\end{aligned}$$

where, in the second equality we used that $f_\varepsilon \rightarrow f$ in $L^1(\tilde{\Omega})$ and in the third equality we used the previous case : indeed $f_\varepsilon \in L^p(\tilde{\Omega})$ for every $p \in (1, +\infty)$, being smooth, and $g \in L^\infty(\tilde{\Omega})$ therefore also in $L^{p'}(\tilde{\Omega})$. The case $p = \infty$ is analogous exchanging f and g .

Moreover, if $f, g \in W^{1,2}(\Omega) \cap L^\infty(\Omega)$, then $\partial_i(fg) = \partial_i fg + f \partial_i g \in L^2(\Omega)$, from which we conclude that $fg \in W^{1,2}(\Omega) \cap L^\infty(\Omega)$.

Exercise 2.5. We first show that \tilde{u} is well defined, namely that $-\infty < \tilde{u}(x) < +\infty$ for all $x \in \mathbb{R}^n$. Let $\bar{x} \in \Omega$. We have $\tilde{u}(x) < u(\bar{x}) + L|\bar{x} - x| < \infty$. Moreover since $u \in \text{Lip}(\Omega)$, $|u(y) - u(\bar{x})| \leq L|y - \bar{x}|$ for every $y \in \Omega$, from which we deduce $u(y) \geq u(\bar{x}) - L|y - \bar{x}|$. Thus

$$u(\bar{x}) - L|x - \bar{x}| \leq u(y) + L|y - \bar{x}| - L|x - \bar{x}| \leq u(y) + L|y - x|,$$

and by taking the infimum all over $y \in \Omega$ we get

$$-\infty < u(\bar{x}) - L|x - \bar{x}| \leq \tilde{u}(x).$$

Now we need to show that $\tilde{u} \in \text{Lip}(\mathbb{R}^n)$, with the same Lipschitz constant L of u . If $x, y \in \Omega$ then

$$|\tilde{u}(x) - \tilde{u}(y)| = |u(x) - u(y)| \leq L|x - y|.$$

If $x, y \in \Omega^c$ we have

$$|\tilde{u}(x) - \tilde{u}(y)| \leq \sup \left\{ |u(z) + L|x - z| - u(z) - L|y - z| | : z \in \Omega \right\} \leq L|x - y|,$$

where we used the following inequality $|\inf f - \inf g| \leq \sup |f - g|$.

If now $x \in \Omega$ and $y \in \Omega^c$, we have

$$\tilde{u}(y) - \tilde{u}(x) = \tilde{u}(y) - u(x) \leq u(x) + L|x - y| - u(x) = L|x - y|.$$

On the other hand, since $u \in \text{Lip}(\Omega)$, $u(z) \geq u(x) - L|x - z|$ for all $z \in \Omega$. Thus

$$u(z) + L|z - y| \geq u(x) - L|z - x| + L|z - y| \geq u(x) - L|x - y|$$

and by taking the infimum all over $z \in \Omega$ we obtain

$$\tilde{u}(y) \geq u(x) - L|x - y| = \tilde{u}(x) - L|x - y|,$$

or, equivalently $\tilde{u}(x) - \tilde{u}(y) \leq L|x - y|$.