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3 Sobolev Spaces

Exercise 3.1. Let {u,}nen € W™P(Q) be a Cauchy sequence. Then for every |a| <
m, {D%uy, }nen is a Cauchy sequence in LP(€2), thus there exists g, € LP(§2) such that
D%u,, — g, in LP(Q). Moreover, denoting by u the LP-limit of u,, then D% = g, in
72'(Q2), indeed

(D%, ) = (1) {u, D*p) = (=1)/*! lim (u,, D*¢) = lim (D, 9) = (ga, ¢} -
Exercise 3.2. The inclusion Wj"P(R?) C W™P(R?) is trivial. In order to prove the
other one, we need to show that Ci°(R?) is dense in W™P(R?). First we recall that
fo = f* p. € C°(R?) converge to f in W™P(R?) : indeed for every multi-index o with
la| < m it holds Df. = (D?f) * p. — D®f in LP(R?). Given § > 0 let € > 0 be such
that Hf - fEHWm,p(Rd) < 5/2

Let ¢ € C5°(RY) be such that ¢ =1 on B;(0) and given R > 0, let pr(z) := ¢(z/R).
We show that for R large enough, || fe— feorllwmrmae) < /2 so that || f— feor|lwmp@ay < 6
and this concludes the proof.

For every multi-index a with |a| < m, by the Leibniz rule (for smooth functions!),
we have ]
D(foo) = Z CosD* P f.DP o = Z Ca,ﬁDaf’stDﬁﬁpm-
BLa B<La
If 3 = 0, then by dominated convergence theorem, D®f.op — Df. in LP(R%) as R — cc.
If 5 # 0, then

|D*P £.DP |D* P fo| oy — 0 as R — oc.

1
B

1
7l
Since C, = 1, this proves that D*(f.pr) — D*f. in LP as R — oo.

Exercise 3.3. Since u € L>®(Q2) and 2 is a bounded domain, we have that u € LP(2) for
every p € [1,00]. Moreover, u is continuous on 2. Let ¢ : @ — R be a function of 2(f2)

so smooth with compact support in 2 and let us compute the partial derivatives of u in
the sense of distributions
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oy’ " Oy o Oy
1 0 @QO /1/1 (990
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:/ / x cos(zy)p(x, y) dedy.
o Jo

Using that || < 1 in QN {z < 0} and both |zcos(zy)| < 1 and |ycos(zy)| < 1
in QN {z > 0}, we deduce that the partial derivatives 2%, g—Z are in LP(Q) (and so
u e Whr(Q)) for every 1 < p < oo.

Exercise 2.4. Let ¢ € 2(Q) and let © CC € such that suppp C Q and & < dist (€2, 99).

Consider the mollifications f. and g., for e < dist ((2,8@) which are well-defined
functions in . If p € (1,4+00), then f. — f, 0;fc — 0;f in LP(Q) and g. — g, 0;9: — 0ig
in L (Q), from which we also deduce that

fege — fg
aifegs + fsaigs — ang + faiga

in L'(€2). Thus we can compute

(9i(fg),p) = —/ﬁfg@isoz —ygg)/ﬁfagg&w

= g%/ﬁ(aifggs + [0,9:)¢ = /ﬁ(&fg + f0ig)p.
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If p=1, then

(0i(f9),¢) = —/ﬁfgaﬁ@ = —li_%/ﬁfsgai%@
= yg(l)/ﬁ(@fsg + f0i9)p = /ﬁ(aifg + f0ig)e,

where, in the second equality we used that f. — f in L'(Q) and in the third equality
we used the previous case : indeed f. € LP(2) for every p € (1, +00), being smooth, and

g € L®(Q) therefore also in L” (). The case p = oo is analogous exchanging f and g.

Moreover, if f,g € W12(Q) N L>(Q), then 0;(fg) = 0ifg+ f0;g € L*(Q), from which
we conclude that fg € WH2(Q) N L>(Q).

Exercise 2.5. We first show that u is well defined, namely that —oo < u(z) < +oo for
all z € R™. Let T € 2. We have u(x) < u(Z) + L|T — x| < co. Moreover since u € Lip(Q),
lu(y) — u(Z)| < Lly — 7| for every y € Q, from which we deduce u(y) > u(Z) — L|ly — T|.
Thus

u(T) — Lz =7 <uly) + Lly — 7| = Lz — 7] < uly) + Lly — |,

and by taking the infimum all over y € ) we get

—o00 < u(Z) — Lz — 7| < u(x).

Now we need to show that w € Lip(R"), with the same Lipschitz constant L of w. If
x,y € () then

() —u(y)| = [u(z) —uly)| < Llz —yl.
If z,y € Q° we have
(@) — ii(y)| < sup {|u(=) + Lz = 2 —u(=) — Lly = || = z € @} < Lo =y,
where we used the following inequality |inf f — inf g| < sup|f — g|.
If now x € Q and y € Q°, we have
uly) —ulz) = uly) —u(z) <u(x) + Llz —y| —u(x) = Lz —yl.
On the other hand, since u € Lip(2), u(z) > u(z) — L]z — z| for all z € Q. Thus
u(z) + Lz —y| =2 u(z) = Llz — z[ + L|z — y| = u(z) = Lz - y|
and by taking the infimum all over z € {2 we obtain
u(y) 2 u(z) = Llr —y| = u(z) — Llz —y|,

or, equivalently u(x) — u(y) < L|z — y|.
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