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3 Sobolev Spaces

Exercise 3.1. Let {un}n∈N ⊂ W m,p(Ω) be a Cauchy sequence. Then for every |α| ≤
m, {Dαun}n∈N is a Cauchy sequence in Lp(Ω), thus there exists gα ∈ Lp(Ω) such that
Dαun → gα in Lp(Ω). Moreover, denoting by u the Lp-limit of un, then Dαu = gα in
D ′(Ω), indeed

⟨Dαu, φ⟩ = (−1)|α| ⟨u, Dαφ⟩ = (−1)|α| lim
n→∞

⟨un, Dαφ⟩ = lim
n→∞

⟨Dαun, φ⟩ = ⟨gα, φ⟩ .

Exercise 3.2. The inclusion W m,p
0 (Rd) ⊂ W m,p(Rd) is trivial. In order to prove the

other one, we need to show that C∞
0 (Rd) is dense in W m,p(Rd). First we recall that

fε := f ∗ ρε ∈ C∞(Rd) converge to f in W m,p(Rd) : indeed for every multi-index α with
|α| ≤ m it holds Dαfε = (Dαf) ∗ ρε → Dαf in Lp(Rd). Given δ > 0 let ε > 0 be such
that ∥f − fε∥W m,p(Rd) < δ/2.

Let φ ∈ C∞
0 (Rd) be such that φ ≡ 1 on B1(0) and given R > 0, let φR(x) := φ(x/R).

We show that for R large enough, ∥fε−fεφR∥W m,p(Rd) < δ/2 so that ∥f−fεφR∥W m,p(Rd) < δ
and this concludes the proof.

For every multi-index α with |α| ≤ m, by the Leibniz rule (for smooth functions !),
we have

Dα(fεφR) =
∑
β≤α

Cα,βDα−βfεD
βφR =

∑
β≤α

Cα,βDα−βfεD
βφ

1
R|β| .

If β = 0, then by dominated convergence theorem, DαfεφR → Dαfε in Lp(Rd) as R → ∞.
If β ̸= 0, then

∥Dα−βfεD
βφ

1
R|β| ∥Lp ≤ sup |Dβφ| 1

R|β| ∥Dα−βfε∥Lp(Rd\BR) → 0 as R → ∞.

Since Cα,0 = 1, this proves that Dα(fεφR) → Dαfε in Lp as R → ∞.

Exercise 3.3. Since u ∈ L∞(Ω) and Ω is a bounded domain, we have that u ∈ Lp(Ω) for
every p ∈ [1, ∞]. Moreover, u is continuous on Ω. Let φ : Ω → R be a function of D(Ω)
so smooth with compact support in Ω and let us compute the partial derivatives of u in
the sense of distributions
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⟨∂u

∂x
, φ⟩ = − ⟨u,

∂φ

∂x
⟩ = −

∫
Ω

u
∂φ

∂x

= −
∫ 1

0

∫ 0

−1
ex ∂φ

∂x
(x, y) dxdy −

∫ 1

0

∫ 1

0
(1 + sin(xy))∂φ

∂x
(x, y) dxdy

= −
∫ 1

0
φ(0, y) dy +

∫ 1

0

∫ 0

−1
exφ(x, y) dxdy

+
∫ 1

0
φ(0, y) dy +

∫ 1

0

∫ 1

0
y cos(xy)φ(x, y) dxdy

=
∫ 1

0

∫ 0

−1
exφ(x, y) dxdy +

∫ 1

0

∫ 1

0
y cos(xy)φ(x, y) dxdy

and

⟨∂u

∂y
, φ⟩ = − ⟨u,

∂φ

∂y
⟩ = −

∫
Ω

u
∂φ

∂y

= −
∫ 1

0

∫ 0

−1
ex ∂φ

∂y
(x, y) dxdy −

∫ 1

0

∫ 1

0
(1 + sin(xy))∂φ

∂y
(x, y) dxdy

=
∫ 1

0

∫ 1

0
x cos(xy)φ(x, y) dxdy.

Using that |ex| ≤ 1 in Ω ∩ {x < 0} and both |x cos(xy)| ≤ 1 and |y cos(xy)| ≤ 1
in Ω ∩ {x > 0}, we deduce that the partial derivatives ∂u

∂x
, ∂u

∂y
are in Lp(Ω) (and so

u ∈ W 1,p(Ω)) for every 1 ≤ p ≤ ∞.

Exercise 2.4. Let φ ∈ D(Ω) and let Ω̃ ⊂⊂ Ω such that suppφ ⊂ Ω̃ and ε < dist (Ω̃, ∂Ω).

Consider the mollifications fε and gε, for ε < dist (Ω̃, ∂Ω) which are well-defined
functions in Ω̃. If p ∈ (1, +∞), then fε → f , ∂ifε → ∂if in Lp(Ω̃) and gε → g, ∂igε → ∂ig

in Lp′(Ω̃), from which we also deduce that

fεgε → fg

∂ifεgε + fε∂igε → ∂ifg + f∂ig,

in L1(Ω). Thus we can compute

⟨∂i(fg), φ⟩ = −
∫

Ω̃
fg∂iφ = − lim

ε→0

∫
Ω̃

fεgε∂iφ

= lim
ε→0

∫
Ω̃
(∂ifεgε + fε∂igε)φ =

∫
Ω̃
(∂ifg + f∂ig)φ.
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If p = 1, then

⟨∂i(fg), φ⟩ = −
∫

Ω̃
fg∂iφ = − lim

ε→0

∫
Ω̃

fεg∂iφ

= lim
ε→0

∫
Ω̃
(∂ifεg + fε∂ig)φ =

∫
Ω̃
(∂ifg + f∂ig)φ,

where, in the second equality we used that fε → f in L1(Ω̃) and in the third equality
we used the previous case : indeed fε ∈ Lp(Ω̃) for every p ∈ (1, +∞), being smooth, and
g ∈ L∞(Ω̃) therefore also in Lp′(Ω̃). The case p = ∞ is analogous exchanging f and g.

Moreover, if f, g ∈ W 1,2(Ω) ∩ L∞(Ω), then ∂i(fg) = ∂ifg + f∂ig ∈ L2(Ω), from which
we conclude that fg ∈ W 1,2(Ω) ∩ L∞(Ω).

Exercise 2.5. We first show that ũ is well defined, namely that −∞ < ũ(x) < +∞ for
all x ∈ Rn. Let x ∈ Ω. We have ũ(x) < u(x) + L|x − x| < ∞. Moreover since u ∈ Lip(Ω),
|u(y) − u(x)| ≤ L|y − x| for every y ∈ Ω, from which we deduce u(y) ≥ u(x) − L|y − x|.
Thus

u(x) − L|x − x| ≤ u(y) + L|y − x| − L|x − x| ≤ u(y) + L|y − x|,
and by taking the infimum all over y ∈ Ω we get

−∞ < u(x) − L|x − x| ≤ ũ(x).

Now we need to show that ũ ∈ Lip(Rn), with the same Lipschitz constant L of u. If
x, y ∈ Ω then

|ũ(x) − ũ(y)| = |u(x) − u(y)| ≤ L|x − y|.
If x, y ∈ Ωc we have

|ũ(x) − ũ(y)| ≤ sup
{∣∣∣u(z) + L|x − z| − u(z) − L|y − z|

∣∣∣ : z ∈ Ω
}

≤ L|x − y|,

where we used the following inequality | inf f − inf g| ≤ sup |f − g|.
If now x ∈ Ω and y ∈ Ωc, we have

ũ(y) − ũ(x) = ũ(y) − u(x) ≤ u(x) + L|x − y| − u(x) = L|x − y|.

On the other hand, since u ∈ Lip(Ω), u(z) ≥ u(x) − L|x − z| for all z ∈ Ω. Thus

u(z) + L|z − y| ≥ u(x) − L|z − x| + L|z − y| ≥ u(x) − L|x − y|

and by taking the infimum all over z ∈ Ω we obtain

ũ(y) ≥ u(x) − L|x − y| = ũ(x) − L|x − y|,

or, equivalently ũ(x) − ũ(y) ≤ L|x − y|.
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